Title: | Estimating the Sufficient Dimension Reduction Subspaces in Time Series |
---|---|
Description: | The sdrt() function is designed for estimating subspaces for Sufficient Dimension Reduction (SDR) in time series, with a specific focus on the Time Series Central Mean subspace (TS-CMS). The package employs the Fourier transformation method proposed by Samadi and De Alwis (2023) <doi:10.48550/arXiv.2312.02110> and the Nadaraya-Watson kernel smoother method proposed by Park et al. (2009) <doi:10.1198/jcgs.2009.08076> for estimating the TS-CMS. The package provides tools for estimating distances between subspaces and includes functions for selecting model parameters using the Fourier transformation method. |
Authors: | Tharindu P. De Alwis [aut, cre] , S. Yaser Samadi [ctb, aut] |
Maintainer: | Tharindu P. De Alwis <[email protected]> |
License: | GPL-2 | GPL-3 |
Version: | 1.0.0 |
Built: | 2024-11-25 06:25:44 UTC |
Source: | https://github.com/cran/sdrt |
The function calculates three metrics for measuring the distance between two subspaces spaning by the columns of two matrices.
dist(A, B)
dist(A, B)
A |
Matrix 1 with dimension p-by-d. |
B |
Matrix 2 with dimension p-by-d. |
The outputs include three scales and one d-dimensional vector.
r |
One minuse the summation of eiegenvalues of the matrix B^TAA^TB. |
q |
One minues the product of eiegenvalues of the matrix B^TAA^TB. |
rho |
rho=sqrt(A^TBB^TA) |
m^2 |
A d-variate vector giving the colum-wise distance between A and B. |
Samadi S. Y. and De Alwis T. P. (2023). Fourier Method of Estimating Time Series Central Mean Subspace. https://arxiv.org/pdf/2312.02110.
Ye Z. and Weiss R.E. (2003). Using the Bootstrap to Select One of a New Class of Dimension Reduction Methods, Journal of the American Statistical Association, 98,968-978.
Annual record of the number of the Canadian Lynx ‘trapped’ in the Mackenzie River district of the North-West Canada for the period 1821-1934.
data(lynx)
data(lynx)
A data list with 114 rows containing the count of Canadian Lynx from 1821-1934.
https://www.encyclopediaofmath.org /index.php/Canadian_lynx_data
‘pd.boots()’ estimates the number of lags in the model and the dimension of the time series central mean subspace.
pd.boots(y, p_list=seq(2,6,by=1), w1=0.1, space = "mean",std = FALSE, density = "kernel", method = "FM", B=50)
pd.boots(y, p_list=seq(2,6,by=1), w1=0.1, space = "mean",std = FALSE, density = "kernel", method = "FM", B=50)
y |
A univariate time series observations. |
p_list |
(default {2,3,4,5,6}). The candidate list of the number of lags, p. |
w1 |
(default 0.1). The tuning parameter of the estimation. |
space |
(default “mean”). Specify the SDR subspace needed to be estimated. |
std |
(default FALSE). If TRUE, then standardizing the time series observations. |
density |
(default “kernel”). Density function for the estimation (“kernel” or “normal”). |
method |
(default “FM”). Estimation method (“FM” or “NW”). |
B |
(default 50). Number of block bootstrap sample. |
The output is a p-by-p matrix, estimated p and d.
dis_dp |
The average block bootsrap distances. |
p_hat |
The estimator for p. |
d_hat |
The estimator for d. |
Samadi S. Y. and De Alwis T. P. (2023). Fourier Method of Estimating Time Series Central Mean Subspace. https://arxiv.org/pdf/2312.02110.
data("lynx") y <- log10(lynx) p_list=seq(2,5,by=1) fit.model=pd.boots(y,p_list,w1=0.1,B=10) fit.model$dis_pd fit.model$p_hat fit.model$d_hat
data("lynx") y <- log10(lynx) p_list=seq(2,5,by=1) fit.model=pd.boots(y,p_list,w1=0.1,B=10) fit.model$dis_pd fit.model$p_hat fit.model$d_hat
‘sdrt()’ is the main function to estimate the SDR subspaces in time series.
sdrt(y, p, d, w1 = 0.1, space = "mean", std = FALSE, density = "normal", method = "FM",n.grid=10)
sdrt(y, p, d, w1 = 0.1, space = "mean", std = FALSE, density = "normal", method = "FM",n.grid=10)
y |
A univariate time series observations. |
p |
Integer value. The lag of the time series. |
d |
Integer value (<p). The dimension of the time series central mean subspace. |
w1 |
(default 0.1). The tuning parameter of the “FM” estimation method. |
space |
(default “mean”). Specify the SDR subspace needed to be estimated. |
std |
(default FALSE). If TRUE, then standardize the data. |
density |
(default “kernel”). Specify the density function for the estimation (“kernel” or “normal”). |
method |
(default “FM”). Specify the estimation method (“FM” or “NW”). |
n.grid |
(default 10). Number of searches for the initial value in “NW” method |
The output is a p-by-d basis matrix for the TS-CMS.
Park J. H., Sriram T. N. and Yin X. (2010). Dimension Reduction in Time Series. Statistica Sinica. 20, 747-770.
Samadi S. Y. and De Alwis T. P. (2023). Fourier Method of Estimating Time Series Central Mean Subspace. https://arxiv.org/pdf/2312.02110.
data("lynx") y <- log10(lynx) p <- 3 d <- 1 fit.model <- sdrt(y, p, d=1,method="FM",density = "kernel") fit.model$eta_hat
data("lynx") y <- log10(lynx) p <- 3 d <- 1 fit.model <- sdrt(y, p, d=1,method="FM",density = "kernel") fit.model$eta_hat
‘sigma_u()’ estimates the turning parameter needed to estimate time series central mean subspace in Fourier Method.
sigma_u(y, p, d, w1_list=seq(0.1,0.5,by=0.1),space="mean", std=FALSE,density="kernel",method="FM",B=20)
sigma_u(y, p, d, w1_list=seq(0.1,0.5,by=0.1),space="mean", std=FALSE,density="kernel",method="FM",B=20)
y |
A univariate time series observations. |
p |
Integer value. The lag of the time series. |
d |
Integer value. The dimension of the time series central mean subspace. |
w1_list |
(default {0.1, 0.2,0.3,0.4,0.5}). The sequence of candidate list for the tuning parameter. |
space |
(default “mean”). Specify the SDR subspace needed to be estimated. |
std |
(default FALSE). If TRUE, then standardizing the time series observations. |
density |
(default “kernel”). Specify the density function for the estimation (“kernel” or “normal”). |
method |
(default “FM”). Specify the estimation method. (“FM” or “NW”). |
B |
(default 20). Number of block bootstrap samples. |
The output is a length(sw2_seq) dimensional vector.
dis_sw2 |
The average block boostrap distances for each candidate list of values. |
Samadi S. Y. and De Alwis T. P. (2023). Fourier Method of Estimating Time Series Central Mean Subspace. https://arxiv.org/pdf/2312.02110.
data("lynx") y <- log10(lynx) p <- 3 d <- 1 w1_list=seq(0.1,0.5,by=0.1) Tuning.model=sigma_u(y, p, d, w1_list=w1_list, std=FALSE, B=10) Tuning.model$sigma_u_hat
data("lynx") y <- log10(lynx) p <- 3 d <- 1 w1_list=seq(0.1,0.5,by=0.1) Tuning.model=sigma_u(y, p, d, w1_list=w1_list, std=FALSE, B=10) Tuning.model$sigma_u_hat